Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(23): 15329-15337, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186025

RESUMO

Novel low-pressure irrigation technologies have been widely adopted by farmers, allowing both reduced water and energy use. However, little is known about how the transition from legacy technologies affected water and energy use at the aquifer scale. Here, we examine the widespread adoption of low-energy precision application (LEPA) and related technologies across the Kansas High Plains Aquifer. We combine direct energy consumption and carbon emission estimates with life cycle assessment to calculate the energy and greenhouse gas (GHG) footprints of irrigation. We integrate detailed water use, irrigation type, and pump energy source data with aquifer water level and groundwater chemistry information to produce annual estimates of energy use and carbon emissions from 1994 to 2016. The rapid adoption of LEPA technologies did not slow pumping, but it reduced energy use by 19.2% and GHG emissions by 15.2%. Nevertheless, water level declines have offset energy efficiency gains because of LEPA adoption. Deeper water tables quadrupled the proportion of GHG emissions resulting from direct carbon emissions, offsetting the decarbonization of the regional electrical grid. We show that low-pressure irrigation technology adoption, absent policies that incentivize or mandate reduced water use, ultimately increases the energy and carbon footprints of irrigated agriculture.


Assuntos
Carbono , Gases de Efeito Estufa , Efeito Estufa , Kansas , Tecnologia , Água
2.
J Contam Hydrol ; 220: 33-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502887

RESUMO

A four-decade dataset (1974-2013) of 107,823 nitrate samples in 25,993 wells from western and eastern parts of Nebraska was used to assess long-term trends of groundwater nitrate concentration and decadal changes in the extent of groundwater nitrate-contaminated areas (NO3-N ≥ 10 mg N/L) over the entire state. Spatial statistics and regressions were used to investigate the relationships between groundwater nitrate concentrations and several potential natural and anthropogenic factors, including soil drainage capacities, vadose zone characteristics, crop production areas, and irrigation systems. The results of this study show that there is no statistically significant trend in groundwater nitrate concentrations in western Nebraska, in contrast with the increasing trend (p < .05) to the east. The spatial extent and nitrate concentrations in contaminated groundwater in center pivot-irrigated areas was less than in gravity-irrigated areas. Areas with a thicker vadose zone and larger saturated thickness of the aquifer have relatively lower nitrate concentrations. The results of a classification and regression tree (CART) model indicate the difference in the influence of physical factors on groundwater nitrate concentrations between western and eastern Nebraska, namely that groundwater nitrate concentrations correspond with vadose zone thickness, effective hydraulic conductivity, and saturated thickness in the west, while in eastern Nebraska, concentrations are correlated with average percent sand in the topsoil (0-150 cm), well depth, and effective hydraulic conductivity.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nebraska , Nitratos
3.
Sci Total Environ ; 566-567: 988-1001, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344509

RESUMO

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

4.
Proc Natl Acad Sci U S A ; 113(9): 2382-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26858431

RESUMO

Valuing natural capital is fundamental to measuring sustainability. The United Nations Environment Programme, World Bank, and other agencies have called for inclusion of the value of natural capital in sustainability metrics, such as inclusive wealth. Much has been written about the importance of natural capital, but consistent, rigorous valuation approaches compatible with the pricing of traditional forms of capital have remained elusive. We present a guiding quantitative framework enabling natural capital valuation that is fully consistent with capital theory, accounts for biophysical and economic feedbacks, and can guide interdisciplinary efforts to measure sustainability. We illustrate this framework with an application to groundwater in the Kansas High Plains Aquifer, a rapidly depleting asset supporting significant food production. We develop a 10-y time series (1996-2005) of natural capital asset prices that accounts for technological, institutional, and physical changes. Kansas lost approximately $110 million per year (2005 US dollars) of capital value through groundwater withdrawal and changes in aquifer management during the decade spanning 1996-2005. This annual loss in wealth is approximately equal to the state's 2005 budget surplus, and is substantially more than investments in schools over this period. Furthermore, real investment in agricultural capital also declined over this period. Although Kansas' depletion of water wealth is substantial, it may be tractably managed through careful groundwater management and compensating investments in other natural and traditional assets. Measurement of natural capital value is required to inform management and ongoing investments in natural assets.

5.
Ground Water ; 54(2): 231-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26014963

RESUMO

A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km(3) since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Água Subterrânea/análise , Recursos Hídricos , Meio-Oeste dos Estados Unidos , Modelos Teóricos , Sudoeste dos Estados Unidos , Recursos Hídricos/provisão & distribuição , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...